
Chapter 9
Building on Howe’s Three Pillars
in Kindergarten to Grade 6 Classrooms

Karen C. Fuson

Abstract Howe (2014, Three pillars of first grade mathematics, and beyond. In:
Li Y. & Lappan G. (eds), Mathematics curriculum in school education, Springer,
Dordrecht, pp 183–207) identified three pillars of first grade mathematics and
beyond that described central mathematical and sense-making aspects of major
Common Core State Standards Math (National Governors Association Center for
Best Practices, Council of Chief State School Officers. 2010) domains. This chapter
builds on each pillar by sharing visual models that have been powerful in helping
students learn the aspects identified by Howe. Visual models are central core ideas
and practices in the CCSS–M and deserve attention and discussion. The research-
based examples discussed here are simple math drawings that students can make
and use in their own ways in problem solving and explaining of thinking. Such
drawings support the math talk discussions that are at the heart of the CCSS–M
and of the mathematical practices. They enable (Howe’s, 2014, Three pillars of
first grade mathematics, and beyond. In: Li Y. & Lappan G. (eds), Mathematics
curriculum in school education, Springer, Dordrecht, pp 183–207) three pillars to
come to life in the classroom. Teachers and students can come to appreciate all
of these pillars: Pillar I, the power of robust understanding of the operations of
addition and subtraction including situations that give meaning to the operations and
levels of single-digit addition and subtraction; Pillar II, an approach to arithmetic
computation that intertwines place value with the addition/subtraction facts; and
Pillar III, making connections between counting number and measurement number.

Howe (2014) identified three pillars of first grade mathematics and beyond that
describe central mathematical and sense-making aspects of major Common Core
State Standards Math (National Governors Association Center for Best Practices,
Council of Chief State School Officers, 2010) domains. The Howe paper circulated
before it was posted on the website in 2010, and it was influential in the design
of the Common Core State Standards Math. This chapter builds on each pillar by
sharing visual models that have been powerful in helping students learn the aspects
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identified by Howe. I draw on 35 years of research in classrooms to discuss strengths
and limitations of various visual models. This research has shown me the power of
research-based math drawings that students make. This research was carried out in
independent research studies and in funded research as part of the Children’s Math
Worlds Project that led to the publication of these models in the K to grade 6 math
program Math Expressions. The research studies and experience with classrooms
using the Math Expressions programs have provided extensive teacher data about
the effectiveness of these visual models. Visual models are central core ideas and
practices in the CCSS–M and deserve attention and discussion. But which visual
models should we be using and why? We need discussion of this issue for various
math domains. This chapter is a contribution to such discussion.

9.1 Pillar I: A Robust Understanding of the Operations
of Addition and Subtraction

9.1.1 Situations that Give Meaning to the Operations

The major real-world situations that give meaning to addition/subtraction and to
multiplication/division have been the focus of much research (e.g., see National
Research Council, 2001, 2009). Problem classifications of these situations drawn
from research are given in the Common Core State Standards on pages 88 and
89 (National Governors Association Center for Best Practices, Council of Chief
State School Officers, 2010). I spent many years trying different diagrams students
could use especially with larger numbers, fractions, and decimals (Fuson, 1988;
Fuson, Carroll, & Landis, 1996; Fuson & Smith, 2016; Fuson & Willis, 1989; Willis
& Fuson, 1988). Students can make their own drawings. But specially designed
diagrams provide a common visual language to support discussion, and they provide
consistency across kinds of numbers.

The final set of research-based diagrams that were successful in hundreds of
classrooms is shown in Fig. 9.1. Students must learn meanings of equations, so
equations were chosen as the visual support for the simplest kind of problems add
to/take from. These situations show action over time, so it is natural for students
to write each step of an equation as a step in the problem situation over time.
Put together/take apart diagrams with the total on the top and two legs for the
addends were found to help students understand these situation actions. Comparison
bars show the two compared quantities in an additive comparison situation, and
the difference quantity created by information about the situation is shown as an
oval that makes the smaller quantity as long as the bigger quantity. The equal
groups multiplication/division situations use the put together/take apart drawing
repeatedly, and the multiplicative comparison situations draw the repeated quantity
bar repeatedly. The array/area situations begin by drawing all of the objects or
squares but quickly get abbreviated to a drawn rectangle in which the factors are
along the sides and the product is inside. This model also reflects the traditional
long division format.
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Fig. 9.2 Labeled math drawings for an unknown start problem

Each type of situation has three quantities, and each quantity can be the unknown.
Some unknowns are more difficult than other unknowns. These differences create
the learning path of difficulty across addition/subtraction situations that extend from
kindergarten to grade 2. The key to solving word problems is understanding the
situation and then making a labeled drawing if needed. Students’ equations often
show the situation rather than the solution. They then think about their drawing
or equation to solve the problem. A difficult take from:start unknown problem is
shown in Fig. 9.2. At the top left, the equation shows the situation, and the student
then draws quantities to show the adding of 5 and 7 to make 12. Students often
represent and solve in different ways. Two other approaches are shown in Fig. 9.2.
Older students can use the same diagrams to support varied approaches for problems
with multi-digit numbers and fractions.

For more information about the learning path of difficulty of the problem types
and how to support students through this learning path, see the Teaching Progression
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on Math Expressions and Operations and Algebraic Thinking (OA) in the CCSS:
Part 1 Problem Situations and Problem Solving at http://www.karenfusonmath.com.

9.1.2 Levels in Adding and Subtracting Single-Digit Numbers

Students worldwide go through three levels of conceptualizing and carrying out
adding and subtracting (e.g., Fuson, 1986, 1992; Fuson & Fuson, 1992; Fuson &
Willis, 1988). At level 1 they can only think of one number at a time. So adding
is a three-step adding-to process in which they focus on the first addend, then
on the addend added to the first addend, and then on the total of both addends.
Subtracting is the reverse taking-from process that begins with the total, takes one
addend from that total, and then focuses on the remaining other addend. At level
2, students can conceptually embed both addends within the total so that they can
begin the counting of the total with the counting of the second addend: to add, they
count on from the first addend to find the total, keeping track of how many are
counted on and saying the last counted word as the total. To subtract, they count
on from the first addend to find the unknown second addend, keeping track of and
stopping as they say the total, and then seeing how many they counted on. At level 3,
students can decompose and recompose addends within the total. So, for example,
they can carry out the general method for single-digit adding and subtracting in
which one addend is decomposed to make a ten with the other addend: for example,
8 C 6 D 8 C (2 C 4) D (8 C 2) C 4 D 10 C 4 D 14. Methods from all three levels
are in the CCSS–M, level 1 at kindergarten and levels 2 and 3 at grade 1.

Howe (2014) discussed in his Pillar II the importance of decomposing a number
into two addends in different ways. In the CCSS–M, such decompositions are a
kindergarten standard:

K.OA.A.3. Decompose numbers less than or equal to 10 into pairs in more than
one way, e.g., by using objects or drawings, and record each decomposition by a
drawing or equation (e.g., 5 D 2 C 3 and 5 D 4 C 1).

Notice that the equations to record these decompositions have the total alone on
the left and the addends are added on the right side. This reflects the taking apart
action in the situation and is helpful in overcoming the prevalent view by older
students that an equation must have two numbers on the left and one number on the
right. It is helpful for kindergarten and grade 1 children to see equations of this form
that show the meaning of the situation.

In my own research, I have found that decomposing numbers into two addends
helps children move to the level 2 methods of single-digit adding and subtracting
that require the addends to be embedded within the total: counting on to find a total
or to find an unknown addend. Such level 2 embedding of the addends within the
total also allows children to solve the more difficult problem subtypes like add to
or take from change unknown and start unknown problems (Fuson & Smith, 2016).
Students can represent change unknown situations by a situation equation such as

http://www.karenfusonmath.com
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8 C? D 14 or 14 �? D 8 and can solve them by level 2 counting on from 8 to 14
to find the unknown addend. Start unknown problems such as the problem in Fig.
9.2 also require an understanding of where totals and addends are in equations or
diagrams and how to relate these three quantities to find the unknown.

Visual supports for decomposing that I have found to be effective in kindergarten
are shown in Table 9.1. Students count out things to make a given number and
partition these in various ways with a break-apart stick. Later, as in the tasks in
Table 9.1, the partitioning is shown in drawings on paper by a break-apart stick
and by shading. Students write the two addends that are created. These addends
are called partners because this word was found to help students relate these two
numbers. In grade 1 (see Fig. 9.3), students move on to using these visual supports
to decompose larger numbers and to relate decompositions that reverse the order of
the addends (using the commutative principle). The decompositions also become

Table 9.1 Percentage correct on partner (addend) tasks for kindergarten children

Unit % Task
3 90 1. Write the partners.

4 92 2. Draw a line to show the partners. Write the partners.

4 92 3. Draw tiny tumblers on the math mountain.

4 85 4. Write the partner equation.

5 88 5. Shade to show all the five partners in order. Write the five partners.

5 83 6. Draw tiny tumblers on the math mountain and write the partner.

Note. These tasks fall centrally within the following CCSS: K.OA.3
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Fig. 9.3 Grade 1 partner switches

mostly numerical for first graders, as these small numbers take on quantitative
meanings from extensive work in kindergarten. Such decompositions appear again
in grade 4 as CCSS–M standard 4.NF.B.3b. This work helps students understand
that unit fractions obey the same principles as whole numbers, reduces the common
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Fig. 9.4 Decomposing fractions into addends/partners

error of adding tops and bottoms when adding fractions (because students see that
only the top numbers are added and that the unit fraction number does not change),
and generalizes decomposing a number into addends (see Fig. 9.4).

Decomposing a number into addends is the second step in doing the general level
3 make-a-ten method: 8 C 6 D 8 C (2 C 4) D (8 C 2) C 4 D 10 C 4 D 14. In the
first step (8 C?), one must know the number that makes ten with the first addend.
In the second step, one decomposes the second addend into the number added to
ten and the rest of the second addend: 8 C (2 C?), where 2 C? D 6. In the third
step, one must know 10 C 4, a total made with ten. All three prerequisites for the
make-a-ten method are kindergarten CCSS–M:
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K.OA.A.4. For any number from 1 to 9, find the number that makes 10 when added
to the given number, e.g., by using objects or drawings, and record the answer
with a drawing or equation.

K.OA.A.3. Decompose numbers less than or equal to 10 into pairs in more than
one way, e.g., by using objects or drawings, and record each decomposition by a
drawing or equation (e.g., 5 D 2 C 3 and 5 D 4 C 1).

K.NBT.A.1. Compose and decompose numbers from 11 to 19 into ten ones
and some further ones, e.g., by using objects or drawings, and record each
composition or decomposition by a drawing or equation (e.g., 18 D 10 C 8);
understand that these numbers are composed of ten ones and one, two, three,
four, five, six, seven, eight, or nine ones.

This method and these prerequisites are emphasized in East Asian countries but
have not been emphasized in this country, especially the second step of decomposing
a number discussed by Howe (2014). As kindergarteners have time to learn these
prerequisites, understanding and carrying out the make-a-ten method will become
easier.

However, this method is more difficult in English than in East Asian languages
based on Chinese that say 14 as ten four. Saying a number between ten and twenty
as a ten and some ones helps with all three steps in the make-a-ten method. In
contrast, an English word such as fourteen has a reversal in the ten and the ones that
complicates the relationship with the written numeral 14. Ten is not said clearly
(how many adults know that teen means ten?). And the number of ones is not
said clearly in eleven, twelve, thirteen, and fifteen. For these reasons, the level 2
counting on methods may be enough for CCSS–M OA problem solving in grades 1
and 2. But make-a-ten methods can be helpful in CCSS–M NBT multi-digit adding
and subtracting, as is discussed in the next section. For more information about
the learning path of three levels of adding/subtracting and how to support students
through this learning path, see the Teaching Progression on Math Expressions and
Operations and Algebraic Thinking (OA) in the CCSS: Part 2 The K, 1, 2 Learning
Paths for OA C and – (at http://www.karenfusonmath.com).

9.2 Pillar II. An Approach to Arithmetic Computation
that Intertwines Place Value
with the Addition/Subtraction Facts

Howe’s (2014) Pillar II involves two major conceptions:

(a) Understanding that a two-digit number is made of some tens and some ones.
(b) In adding or subtracting, you work separately with the tens and the ones, except

when regrouping is needed.

Both of these concepts extend to larger numbers with more places. Howe pointed
out that it would be useful to have a term for the numbers created by a decomposition

http://www.karenfusonmath.com
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into place value numbers, for example, in 243 D 200 C 40 C 3. He suggested that
such numbers be termed single-place numbers; the 200, 40, and 3 would be called
single-place numbers. This is a helpful observation and might make it easier for
students to conceptualize and discuss such parts. But I suggest instead the term
place value parts for such numbers because they are parts and they explicitly name
place values. Howe’s two concepts above form the basis for general methods of
adding and subtracting for any number of places. Students need to be able to add and
subtract the single-digit addends discussed in Pillar I. And they need to understand
how to think about and have a written method to record grouping when adding and
ungrouping when subtracting. For two-digit numbers, students will group ten ones
to make one ten whenever their total for the place value parts in a given place is ten
or more. In general, they will group ten of one kind of place value parts to make
one of the place value parts in the next-left column. And they will ungroup one of
one kind of place value parts to make ten of the place value parts in the next-right
column.

I did research for many years to ascertain what visual supports would
help students understand these two vital conceptions that underlie multi-digit
adding/subtracting and what general written methods were easy for students to
understand and explain and relate to visual supports (Fuson, 1998, 2003; Fuson &
Li, 2009; Fuson & Smith, 1997; Fuson, Smith, & Lo Cicero, 1997; Fuson et al.,
1997). Students need to see and understand the quantities that make the place value
parts for any number. Secret-code cards that can be layered to show place value
parts and math drawings that students can make to show the quantities for each place
value are both very helpful to students. The fronts and the backs of the secret-code
cards are shown in Fig. 9.5. Unlayered, the cards show the place value parts (400
and 80 and 6). When layered on top of each other, the cards show the usual single-
digit form of our base-ten numerals (486). But the little numbers on the top left of
each card remind students of the place values for each part and of the zeroes that are
hiding under the other digits. These cards are called secret-code cards because they
show the secret code of our numbers, and students love the term. The quantities
named by the place value parts are shown on the back of the cards: 4 hundreds,
8 tens, and 6 ones. Students learn how to draw these quantities by drawing on
columns of ten dots to make a ten-stick and making a box around ten such columns
of ten dots (or ten such ten-sticks) to make a hundred-box. Soon students make
quick-hundred and quick-ten drawings that are just a hundred-box and a ten-stick,

Fig. 9.5 Secret-code cards for 486
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but they understand the quantities involved. Secret-code cards can be used on a
millions frame to show the groups of three numbers in millions, thousands, and
ones. Secret-code cards can also be extended in the opposite direction to show
decimal place value parts.

These visual models support working separately with the place value parts, as
described in Pillar IIb and in the CCSS–M. The CCSS–M critical areas for each
grade at which new multi-digit computation is introduced specify that students
are to “develop, discuss, and use efficient, accurate, and generalizable methods”
for that computation. They further specify that students are to understand that
adding and subtracting involve adding or subtracting place value parts, composing
or decomposing these parts as needed. Importantly, the CCSS–M also specify that
students use concrete models or drawings, relate strategies based on place value to a
written method, and explain why the methods work. For example, in grade 2, NBT
standards 7 and 9 state:

2.NBT.B.7. Add and subtract within 1000, using concrete models or drawings and
strategies based on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a written method. Un-
derstand that in adding or subtracting three-digit numbers, one adds or subtracts
hundreds and hundreds, tens and tens, and ones and ones; and sometimes it is
necessary to compose or decompose tens or hundreds.

2.NBT.B.9. Explain why addition and subtraction strategies work, using place value
and the properties of operations.3 [3Explanations may be supported by drawings
or objects.]

There are different ways to write generalizable methods that meet the above
specifications. There is no such thing as “a standard algorithm” in spite of the
widespread use of this term. Many different methods have been used historically
in this country and in other countries, often several at the same time. The National
Research Council report adding it up made this point and showed and discussed
many methods (National Research Council, 2001). Fuson and Beckmann (2012)
followed the lead of the NBT Progression document (the Common Core Writing
Team, 7 April 2011) and summarized that the standard algorithm for an operation
implements the following mathematical approach with minor variations in how the
algorithm is written:

• Decomposing numbers into base-ten units and then carrying out single-digit
computations with those units using the place values to direct the place value
of the resulting number

• Using the one-to-ten uniformity of the base-ten structure of the number system
to generalize to large whole numbers and to decimals
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Fuson and Beckmann then identified variations in written methods for recording
the standard algorithm for each operation, showed visual models that supported
understanding of the written methods, and discussed criteria for evaluating which
variations might be used productively in classrooms. A similar discussion for
teachers of advantages and disadvantages of various written methods for addition
and subtraction is given in National Council of Teachers of Mathematics (NCTM)
(2011). Fuson and Li (2009) identified and analyzed a number of variations of
written methods for multi-digit addition and subtraction found in textbooks in
China, Japan, and Korea.

These analyses converge on one method of addition and one method of sub-
traction that are superior to others. The addition method is shown in Fig. 9.6,
where drawings and a student explanation are shown for each step in adding using
place value parts. Questions by other students follow at the bottom. This classroom
example implements the CCSS–M and Pillar II. Notice, as you read, the example
of how the drawings can support listeners’ understanding of the explanation and of
the questions by other students and can clarify both aspects of multi-digit adding
identified above.

This method, often called New Groups Below, has several conceptual and
procedural advantages compared to the current common method in which the
new groups (the little 1 s) are written above the columns. It supports place value
understanding by:

• Making it easier to see the teen sums for the ones (16 ones) and for the tens
(14 tens), rather than separating these teen sums in the space above and below
the problem so that it is difficult to see the 16 or the 14.

• Allowing students to write the teen numbers in the usual order as 1 then 6 (or 1
then 4) instead of writing the 6 and then “carrying” or grouping the 1 above.

• Making it easier to see where to write the new 1 ten or 1 hundred in the next
left place instead of above the left-most place (a well-documented error that
arises more with problems of 3 or more digits and is easier to make when one is
separating the teen number below and above the problem).

• Making it easier to carry out the single-digit additions because you add the two
larger numbers you see and then increase that total by 1, which is waiting below.
When the 1 is written above the column, students who add the two numbers in the
original problem often forget to add the 1 on the top. Many teachers emphasize
that they should add the 1 to the top number, remember that number and ignore
the number they just used, and add the mental number to the other number they
see. This is more difficult than adding the two numbers you see and then adding 1.

Notice in Fig. 9.6 how the drawings use five groups to support the level 3 make-
a-ten methods. When adding 9 ones and 7 ones, you can see that the 9 needs one
more to make ten; this one ten can be written below in the tens column waiting for
it to be added. The 7 has been decomposed into 1 to make ten and 6 left, so the 6
ones can be written below as the total number of ones. Similarly for the tens, 8 tens
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Fig. 9.6 Three-digit addition using New Groups Below with student drawings, explaining, and
questioning. The explainer stands to the side and points with a pointer to parts of the math drawing
or to parts of the problem as they are mentioned. Pointing is a crucial part of the explanation.
Reprinted with permission from Focus in Grade 2: Teaching with Curriculum Focal Points,
copyright 2011, by the National Council of Teachers of Mathematics. All rights reserved

can be seen to need 2 more to make ten tens; this new one hundred can be written
below the hundreds column. The 5 tens are decomposed into 2 to make ten with 8
tens and 3 tens left; the 3 can be added to the 1 ten waiting below and then the 4 tens
written below the tens column. With experience, the make-a-ten method can be done
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mentally in this multi-digit adding context and then perhaps in other contexts. Such
five-group visual models are used widely in East Asian classrooms. They can be
used from the first day of kindergarten displayed on a poster with numerals to help
children build understanding of single-digit numbers. These five groups are used on
the backs of the secret-code cards shown in Fig. 9.5 to help children see how many
hundreds, tens, and ones more easily.

Two written methods for subtracting after decomposing into place value parts
are shown in Fig. 9.7. The better method is shown first. Before you subtract a given
kind of place value part (a given column), you need to check if you can subtract the
bottom number from the top number: Is the top number greater than or equal to the
bottom number? If not, you need to get more of those units in the top number by
ungrouping one unit from the left to make ten more of the units in the target column.
All of these “checking and ungrouping if needed” steps can be done first, either from
the left or from the right. Then all of the subtracting can be completed either from
the left or from the right. These subtractions can actually be completed in any order,
but going in one direction systematically creates fewer errors. This taking care of all
needed ungrouping first is shown in Fig. 9.7 as method A with math drawings for a
three-digit example and then without drawings for a six-digit number at the bottom
to show how the method generalizes. Students can stop making drawings as soon as
they understand and can explain the steps.

Ungroupings from the left and from the right are shown for the six-digit example.
You can see how these ungroupings differ by looking at the ungroupings in the
second and fifth columns. In ungrouping from the left, the 6 hundred thousands
give 10 ten thousands to the 2 ten thousands, making 12 ten thousands and leaving
5 hundred thousands. Then the 3 thousands need more thousands (to subtract the
6 thousands), so the 12 ten thousands give 10 thousands to the right making 13
thousands and leaving 11 ten thousands. In ungrouping from the right, you ungroup
moving to the left, and when you get to the ten thousands place, you have taken 1 ten
thousands to give 10 thousands to the 3 thousands to make 13 thousands. The steps
of ungrouping involve the same quantities, but they are done in different orders as
shown by the ungrouped numbers above the problem.

Separating the two major kinds of steps involved in multi-digit subtracting as in
this method is conceptually clear and makes it easier to understand that you are not
changing the total value of the top number when you ungroup. You are just moving
units around to different columns. Many students prefer to move from left to right,
as they do in reading, and productive mathematical discussions can take place as
students explain why they can go in either direction and still get the same answer.

The method B variation in Fig. 9.7 involves following the same steps but
alternating between ungrouping and subtracting. Alternating steps is more difficult
for students, and this method sets up the common subtraction error of subtracting the
top from bottom number when it is smaller (e.g., for 94–36, get 62). Even when you
know you should check and ungroup if needed, alternating steps prompts errors. For
example, in the three-digit number in step 2, you have just subtracted 6 ones from
13 ones to get 7 ones. You look at the next column and see 1 and 5, and 4 pops
into your head (if you are only in second grade). You write 4 and move left. In the
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Fig. 9.7 Multi-digit subtraction methods

six-digit problem, the three errors that can be created by alternating ungrouping and
subtracting in method B are in red. Although this alternating method can be used
for numbers of any size, it is not as easy or conceptually clear as method A. For
two-digit numbers, the alternating method B and non-alternating method A are the
same because there is no iteration of the steps.

For more information about how to support students through the learning path of
understanding place value parts and making drawings to show them and use them
in explaining multi-digit addition and subtraction, see the Teaching Progression on
Math Expressions and Number and Operations in Base Ten (NBT) in the CCSS:
Part 2 Place Value and Multi-digit Addition and Subtraction in K to G4 (at http://
www.karenfusonmath.com).

http://www.karenfusonmath.com
http://www.karenfusonmath.com
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9.3 Pillar III. Making Connections Between Counting
Number and Measurement Number

9.3.1 Limitations of Length for Showing Place Value
and Addition and Subtraction

Physical and Practical Issues Howe (2014) suggested that students use trains of
100-rods, 10-rods, and 1-cubes to show place value. Length does show how the place
value parts get big quickly. But length is not practical for use in a classroom. Length
is too long for students to use to show or add or subtract even two-digit numbers.
Base-ten blocks have ten-sticks 10 cm long and 1-cubes 1 cm long. Length trains of
ten-sticks and 1-cubes do not fit across most student desks, and most rooms do not
have enough tables on which all students can work. Base-ten blocks use a 10 cm by
10 cm square for hundreds rather than length; this is more practical. But the blocks
present other difficulties. They are expensive, leave no record of the steps in using
them, cannot be used for homework, are difficult to show the whole class, and are
cumbersome to relate to written methods. The drawings shown in Figs. 9.6 and 9.7
have none of these disadvantages.

Drawings that just use length are also problematic. The CCSS–M 2.MD.B.5 and
CCSS–M 2.MD.B.6 specify that students should relate addition and subtraction
to length by solving word problems involving lengths and by representing whole
numbers and whole number sums and differences within 100 as lengths from 0 on
a number-line diagram. However, to get 100 units across a page even horizontally,
each unit is about 1.6 mm long. This is small. Consequently, a number-line diagram
to 100 is too short to see numbers clearly and is too complex for students to draw
even semi-accurately. So, students can work with a few examples already drawn
on a page to see that their count models do extend to length models. They can
use meter sticks marked into centimeters and decimeters in demonstrations for the
whole class of these lengths related to their place value parts. But the tools for
adding and subtracting that can actually be used by each student are drawings of
hundreds, tens, and ones related to written methods as shown in Figs. 9.6 and 9.7.

Length Models Constrain the Addition and Subtraction Methods Students Can
Easily Use Length models do not support Pillar II or general CCSS–M methods
that compose separate place value parts because they keep one multi-digit number
together and add to or take from that number. Such methods require advanced
sequence counting skills as students add on or take from hundreds or tens or ones
from a whole two-digit or three-digit number. I tried these methods in classrooms
for several years, but I found that it was difficult for less-advanced or non-native
English speakers to learn these sequence counting skills. These methods can be done
using drawn place value parts as in Figs. 9.6 and 9.7 instead of length models. They
still require the same sequence counting skills, but they do not require learning to
use a different visual model. Further problems with these length model methods are
discussed in Fuson and Beckmann (2012) and NCTM (2011). Among other issues,
they are not generalizable to larger numbers.
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9.3.2 Counting Number and Measurement Number Do Relate
Well to Show Multi-digit Multiplication and Division

Count models of drawn place value parts as used for addition and subtraction lead
into the array models (count models using things as units) and area models (measure
models using units of measure) commonly used to visualize multiplication and
division. For example, the known factors are the numbers of rows and of columns in
an array or the lengths of the sides, and the product is the number of total things in
the array or the number of unit squares in the area model. I have found with many
classrooms that students can make such array or area drawings for small numbers
on a dry-erase Math Board that shows 100 by 50 dots, each 4 mm apart. Students
can draw around the dots to make arrays, or they can draw on the lengths between
the dots to show area. Such drawings (e.g., for 24 � 37) show all of the drawn place
value parts accurately to scale. Then students can move to drawing sketches and
relate them to a written method. Eventually students drop the sketches and just do a
written method.

There are written variations for multiplication and division that record the place
value parts in somewhat different ways. Advantages and disadvantages of many of
these are discussed in Fuson and Beckmann (2012). Approaches that I have found to
be understandable by many students are shown in Fig. 9.8. The area model is shown
on the left. For multiplication, students know and draw the lengths of the two sides,
separating the place value units tens and ones. They draw line segments inside the
rectangle to make subareas for the products of the place value parts and fill in the
products for each subarea.

The expanded notation method shown in the top middle for multiplication is a
common approach. But there are tricky parts of this method, so students in one
classroom added the blue steps to help all of them see what was happening in each
step and avoid their errors, and the multiplying was written for the largest place
value unit product (the tens � the tens) first so that the other products could be
aligned underneath. The blue steps can drop out when they are not needed. This
fuller method is helpful to many students initially.

But I found in many classrooms that some students had difficulty with this
method: they could not see what to multiply by what. The area model was clearer
about what to multiply by what, so they would draw a little rectangle, record the
products inside the subareas, and add them up on the right as shown in the place
value sections method.

The one-row method shown on the top right is a common embedded method that
alternates multiplying and adding and that writes the added-in value for the tens �
ones step in the wrong place: 60 � 3 is 180, but the 1 hundred is written above the
tens column (above the 4 and the 6). Better methods are discussed in Fuson and
Beckmann (2012).

The rectangle sections method, on the bottom left for division, helps students
relate multiplication to division as they see how the same area model can be used
for both. Students first draw a length 40 for the tens part of the unknown factor
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Area Model Place Value
Sections

Expanded Notation 1-Row

43 = 40 + 3 1
2

2 4 0 0 × 67 = 60 + 7 4 3
1 8 0 60 × 40 = 2 4 0 0 x   6 7
2 8 0 60 × 3 = 1 8 0 3 0 1

+      2 1 7 × 40 = 2 8 0 2 5 8

2 8 8 1 7 × 3 = 2 1 2 8 8 1
2 8 8 1

Rectangle Sections Expanded Notation Digit by Digit
3

4 0 4 3 
67    2 8 8 1 67    2 8 8 1

- 2 6 8 0 - 2 6 8
2 0 1 2 0 1

- 2 0 1 - 2 0 1

40 +  3

60

+
7

2400

280 21

180

40 +  3

67 2 8 8 1
- 2 6 8 0

2 0 1
2 0 1

2 0 1 0

= 43 43

) )

1

1

Fig. 9.8 Drawings and written variations of standard algorithms for multiplication and division

and multiply 67 by that number 40. They subtract the resulting 2680 from the total
product to find the area of the subarea for the ones unit, getting 201. They draw the
ones length 3, multiply 3 � 67, and subtract that from the area of the ones subarea.
This problem has no remainder, but many problems do have a remainder. The other
methods in the bottom row of Fig. 9.8 show the same steps of finding the tens and
then the ones values of the unknown factor. These methods can be related to the area
model so that students understand what they are doing, and students can discuss how
all three methods relate to each other.

To return to the issue of length models with which this section began, alternating
square and long shapes shows place values more easily than do just length models.
The hundred square discussed earlier is the new larger square unit, ten of which
can be composed in a tall column to make a thousand. Ten of these tall columns
can be composed to make the new large square unit of ten thousand. Ten of these
ten thousand units can be composed in a tall column to make a hundred thousand.
Finally, ten of these hundred thousand long shapes can be composed to make a
huge million square. The units for these models can be count numbers (dots) or
measure numbers (tiny unit squares). Making such a display in the hallway has
been a productive activity for many classrooms.

For more information about the learning path of multi-digit multiplica-
tion/division and how to support students through this learning path, see the
Teaching Progression on Math Expressions and Number and Operations in Base
Ten (NBT) in the CCSS: Part 3 Place Value and Multi-digit Multiplication and
Division in G3 to G6 (at http://www.karenfusonmath.com).

http://www.karenfusonmath.com
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Fig. 9.9 Relationships between counting number, cardinal number, and measure number

9.3.3 Numbers on the Number Ray Tell Distances
from the Endpoint/Origin

Howe’s (2014) final major point concerning counting number and measurement
number is the understanding that the numbers on the number ray tell distances
from the endpoint/origin. This is a crucial understanding that provides a sound
basis for placing whole numbers and fractions on the number-line diagram. Some
people refer to whole numbers and fractions on the number line as points on the
number line. Thinking only about points does not provide meanings for adding
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Fig. 9.10 Seeing length units
on a ruler by drawing
successive lengths

and subtracting. How can you add one point and another point and get a third
point? This is only possible if the points are actually endpoints of distances from
zero created by length units. The CCSS–M 3.NF.A.2a and CCSS–M 3.NF.A.b
use this relationship between interval/distance/length units and the endpoint of the
interval/distance/length from zero to describe representing fractions on a number-
line diagram.

Seeing the length/distance units on a number line is difficult because our brains
are wired to see things not lengths. In Fig. 9.9, counting numbers are shown at the
top, each within a square to make it easy to count them. Below that is a number
line where the numbers represent the number of length units from 0. Notice how
your eye is drawn by the numbers below the line and the little vertical marks for the
ends of each unit. It is difficult to see the unit lengths on the line that lie between
the numbers. In the middle are shown the relationships between count and cardinal
meanings of number described in K.CC.B.4b: the last counted word tells how many
things there are. Below that are shown the similar relationships between count and
measure meanings of number: the last counted word tells how many unit lengths
there are. Because of the visual difficulty and the off-by-one errors induced by
number lines, the National Research Council reports (2001, 2009) conclude that
number lines are not appropriate for PK, K, or grade 1 children. Visual count models
like the number path shown at the top of Fig. 9.9 are appropriate. The CCSS–M is
consistent with these recommendations, first introducing number lines at grade 2.

Rulers and bar graph scales have the same structure as a number line. Figure
9.10 shows a ruler. Notice how the eye is drawn by the points marked by the short
vertical segments and by the numbers below these. We have to work hard to help
students see and use the distances/lengths in rulers, bar graph scales, and number
lines. One way is shown in Fig. 9.10. Students can draw one length unit and write
a 1 after it, then very close below they draw two length units with a 2 after it, then
three length units followed by a 3, etc. They then can think of a ruler as all of these
lengths pushed together to make a single line with all of these lengths on it; the
number of lengths so far is written at the endpoint of each of the lengths. They also
can make little vertical segments as they measure lengths initially and then count
those lengths to emphasize that they are measuring length units.

In Fig. 9.11, we can see three other ways to see the lengths on fraction number
lines. First, at the top, a fraction bar in which one can see lengths is drawn above
a number line in which the eye is drawn to points instead of lengths. The lengths
in the fraction bar help one see the lengths in the number line. At the bottom, the
number of unit fractions (seven) is shaded in the number bar and encircled in the
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Fig. 9.11 Seeing the unit fraction lengths by shading or encircling

number line. This helps the viewer see the lengths. Students can also be asked to
slide their finger along each length as they count the seven unit fraction lengths.

Making unit fraction drawings in these two steps also helps students make sense
of unit fractions. Usually students just see the second step with some of the unit
fractions shaded or otherwise marked. But then they do not see the total number of
unit fractions, here four in one whole. They just see the two parts of the fraction
embedded inside the whole. If only the second whole had been shown, students
would see three parts shaded and one part not shaded in that second whole. Many
students then say that the fraction is 1/3 because they see the parts 1 and 3 but not
the total four parts. But in the top drawing in which four unit fractions are made in
one whole, students can see the four unit fractions. So the right-hand bottom half
of the drawing shows three parts shaded of the total four parts, so ¾. Here, to see
that the bottom shows 7/4 and not 7/8, the top unit fractions could each have been
labeled ¼.

Without consistent support to see the lengths in number lines, students make
errors when drawing or labeling number lines for whole numbers or fractions. They
may count the points beginning with the first point as 1 instead of as 0 and get one
too few unit lengths. If they have a number line with the starting and end marks
already made, they may make as many new marks as unit fractions, resulting in one
too many unit lengths.

Number lines are an important mathematical tool, and students must come to
understand the relationships between the distance/length units and the endpoints
of these units that are labeled on the number line. For more information about the
learning path of fraction conceptions and computation and how to support students
through this learning path, see the Teaching Progression on Math Expressions
and Number and Operations—Fractions (NF) in the CCSS–M (at http://www.
karenfusonmath.com).

http://www.karenfusonmath.com
http://www.karenfusonmath.com
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9.4 Visual Models Are Central Core Ideas and Practices
in the CCSS–M and Deserve Attention and Discussion

We close by summarizing the importance of visual models for building under-
standing and explaining in classrooms. As the research-based examples here have
shown, models can be simple math drawings that students can make and use in their
own ways in problem solving and explaining of thinking. They support the math
talk discussions that are at the heart of the CCSS–M. The CCSS–M specify eight
mathematical practices that are to be implemented with the standards. These eight
can be formed into four pairs (practices 1 and 6, practices 7 and 8, practices 4 and 5,
practices 2 and 3) and given names to support their use in the classroom. A teacher
can ask every day: “Did I support students to focus on math sense-making about
math structure using math drawings (visual models) to support math explaining?
And can I do this better tomorrow?” These mathematical practices, and the visual
models that support their implementation, can help Howe’s (2014) three pillars
come to life in the classroom. Teachers and students can come to appreciate
the power of robust understanding of the operations of addition and subtraction
including situations that give meaning to the operations and levels of single-digit
addition and subtraction (Pillar I), an approach to arithmetic computation that
intertwines place value with the addition/subtraction facts (Pillar II), and making
connections between counting number and measurement number (Pillar III). These
are crucial aspects of CCSS–M OA, NBT, and NF standards.
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